National Aeronautics and Space Administration

Solar Electric Propulsion

In Space Propulsion Technology Project NASA Marshall Space Flight Center Dr. Michael LaPointe Earth Science Technology Conference 2006 June 27-29, 2006

www.nasa.gov

Outline

- Background: Why the Interest in Solar Electric Propulsion?
- Types of Electric Thrusters: a Quick Review
- Primary In-Space Propulsion Program SEP Task Areas
- Future Directions

Background

<u>Chemical propulsion</u> converts the energy stored in the molecular bonds of a propellant into kinetic energy

- Typically high thrust to weight (required for launch)
- But the exhaust velocity is limited by the chemical energy available
- Why is this important?

$$\frac{M_{f}}{M_{0}} = \exp\left[-\Delta V_{V_{e}}\right]$$

- For a given change in velocity (ΔV), the delivered mass (M_f) depends on the propellant exhaust velocity (v_e)
- More propellant is required to provide a given impulse at lower exhaust velocities

Background

Electric propulsion (EP) uses electrical power to provide kinetic energy to a gas propellant

- Decouples kinetic energy from limitations of chemical energy
- Provides higher exhaust velocities than chemical engines
 - Reduces propellant mass needed to provide a given impulse
 - Allows reduction in launch mass <u>or</u> increase in payload; can provide substantial benefits in mission cost
- Electric propulsion primarily benefits large total impulse missions
 - Orbit raising, repositioning, long-term station keeping
 - Robotic planetary and deep space science missions
 - Precise impulse bits for formation flying (pulsed EP systems)
- Electric propulsion employed on over 180 spacecraft, including EO-1 (earth observation), SMART-1 (lunar mission), and DS-1 (comet fly-by), with DAWN (asteroid mission) to launch in 2007

Background

Additional considerations...

- Lower thrust to weight than chemical engines
 - Small but steady acceleration, vs. short-burn chemical engines
 - EP engines must be designed for long life (thousands of hours)

- Increased dry mass due to:
 - Solar arrays
 - Power processing unit
 - Other EP specific hardware
- Spacecraft integration considerations:
 - Electric power requirements
 - Plasma plume and potential EMI

 Propulsion system trades performed to evaluate whether a given mission will benefit from the use of electric propulsion

Electric Propulsion

Electric thrusters are generally categorized by their primary acceleration mechanism:

- Electrothermal
 - Resistojet (commercial flight units available)
 - Arcjet (commercial flight units available)
- Electrostatic
 - Hall effect thrusters (commercial flight units + development)
 - Gridded ion thrusters (commercial flight units + development)
- Electromagnetic
 - Pulsed plasma thruster (commercial flight units available)
 - Magnetoplasmadynamic thruster (laboratory models only)
 - Pulsed inductive thruster (laboratory models only)

Electrothermal Thrusters

- heat gas and expand through a nozzle

Resistojet thrusters use resistive heating elements to increase the thermal energy of a gas propellant

Arcjet thrusters use an electric arc to increase the thermal energy of a gas propellant

Electrostatic Thrusters

- generate high voltages for ion (plasma) acceleration

<u>lon</u> thrusters use closely spaced high voltage grids to create an electrostatic field

Hall thrusters use magnetically trapped electrons to create an electrostatic field

Electromagnetic Thrusters

- apply a Lorentz (JxB) force for plasma acceleration

<u>Pulsed Plasma</u> thrusters use a pulsed, repetitive current to ablate solid propellant, induce magnetic field (JxB)

<u>Magnetoplasmadynamic</u> thrusters use a high power, steady-state current to ionize gas propellant, induce magnetic field (JxB)

Performance Regimes

In-Space Propulsion Technology Program: Solar Electric Propulsion Task Areas

ISP SEP Task Areas

Primary SEP Tasks

- NEXT: NASA's Evolutionary Xenon Thruster
- HiVHAC: High Voltage Hall Accelerator
- Standardize thruster power and propellant flow systems to reduce costs

Objectives

- Expand the mission envelope of ion and hall thrusters
 - Extend thruster lifetime
 - Extend power range
 - Increase specific impulse
 - Expand SEP system capability to enhance or enable robotic earth and space science missions

J. Dankanich/MSFC

NASA's Evolutionary Xenon Thruster (NEXT)

- NSTAR 30-cm thruster flew on successful NASA Deep Space 1 mission, will be used on DAWN asteroid rendezvous mission (launch FY07)
- NEXT 40-cm thruster will expand SOA ion thruster capabilities to benefit Discovery/New Frontiers and other NASA science missions
 - Reduces number of thrusters required for demanding SMD science missions, reduces total system mass, improves thruster service life

Thruster Attribute	NSTAR ¹	NEXT
Max. Input Power, kW	2.3	Up to 7
Throttle Range	4:1	Up to 10:1
Max. Specific Impulse, s	3,170	4,190
Efficiency @ Full Power	62%	71%
Propellant Throughput, kg	235	>300 (design)
Specific Mass, kg/kW	3.6	~2.5

¹NASA Solar Electric Propulsion Technology Application Readiness

Mission Applications

		System Input		Total Component Mass
Configuration	Typical Mission	Power Range	Thrust Range	(excl. DCIUs)
1+1	Discovery	0.6 - 7.2 kW	25 - 236 mN	115 kg
	Discovery, New			
2+1	Frontiers	0.6 - 14.4 kW	25 - 472 mN	172 kg
3+1	Flagship	0.6 - 21.6 kW	25 - 708 mN	229 kg

Discovery Mission Example: Sample Return from Deimos¹

- NEXT SEP system
 - 1 operating thruster +1 spare
- Solar array power (1AU, BOL): 10-kW
- Launch Vehicle: Delta II-2925H
- Stay time: 90 days
- Total roundtrip transfer time: 2.91 years
- EP ΔV: 10.04 km/s
- Mass breakdown:
 - Launch mass: 1,065 kg (C3 =13.9 km2/s2)
 - Xenon propellant mass: 230 kg
 - Final mass: 835 kg

Project Background

- Two-phase project to develop NEXT to TRL-5/-6
 - Sponsored by NASA Science Mission Directorate, conducted under MSFC In-Space Propulsion Technology Program
 - Implemented through competitive NRA
 - Phase 1: one-year base period, completed August 2003
 - Phase 2: multi-year (3+) option period, initiated October 2003
 - Addresses the entire ion propulsion system:
 - Thruster
 - Power processing unit (PPU)
 - Propellant management system (PMS)
 - System integration (including gimbal and control functions)

• NEXT Project Team:

- NASA Glenn Research Center: Technology Project Lead
- NASA Jet Propulsion Laboratory: System Integration Lead
- Aerojet Corp: Thruster, PMS, DCIU simulators
- L3 Comm ETI: Power processing unit
- Participation by Applied Physics Lab, U. Michigan, Colorado State U.

Primary Hardware

- Five NEXT engineering model thrusters built
 - Four EM thrusters used in multi thruster array test
 - EM-3 undergoing long duration performance test (initiated 6/5/05)
 - Over <u>5500 hours</u> of operation and <u>110-kg</u> xenon propellant throughput; exceeds NSTAR Deep Space 1 flight experience

- Delivered by Aerojet to GRC in January 2006
- Performance acceptance testing completed at GRC
- Thruster shipped to JPL June 2006 for comprehensive testing
 - gimbal integration, random vibration, thermal vacuum tests
- -Second prototype model thruster to be built in FY07 (PM-2)
 - PM-2 thruster life test planned at GRC in FY07
 - PM-1 remains available for operational testing

Primary Hardware, continued

- Power Processing Unit
 - Engineering model PPU in fabrication at L3 Comm
 ETI
 - Functional testing and delivery to GRC in August 2006
 - Operating characteristics:
 - Input power 0.62-kWe to 7.2-kWe
 - Main input power voltage 80-V to 160-V
 - Efficiency > 94% at peak power
 - Specific power > 0.2-kWe/kg
- Propellant Management System
 - All PMS assemblies complete
 - Two high pressure assemblies (one flight-like)
 - Three low pressure assemblies (one flight-like)
 - All assemblies have completed functional tests
 - Flight-like HPA and LPA have completed vibe tests, post-vibe functional tests

System Status

- Multi-Thruster Array Test (FY06)
 - Assess thruster and plasma interactions (effect of thruster spacing, gimbaled thrusters, neutralizer operating modes)
 - Four GRC EM thrusters (three operating, one instrumented non-operating)
 - Completed December 2005 at GRC
 - Expected performance achieved; well understood operations, no significant sensitivity to system configuration
- System Integration Test (FY07)
 - PM thruster, EM PPU, flight-like HPA and LPA, gimbal and DCIU simulator
- System Service Life Analysis (On-going)
 - Thruster life modeling and analysis

High Voltage Hall Accelerator (HiVHAC)

- Optimize Hall thrusters for NASA SMD missions
 - Operate at high voltage (~ 1000-V) to increase specific impulse
 - Operate at higher power density to increase thruster efficiency
 - Mitigate channel erosion to increase throughput and total impulse
- Primary HiVHAC Products:
 - SOA Design: NASA-94-M thruster with discharge channel walls thick enough to enable 150 kg of propellant throughput (GRC/Aerojet led design)
 - <u>Advanced SOA Design</u>: NASA-103M thruster with in-situ replacement of eroded channel walls to enable 300 kg of propellant throughput (GRC led design)
 - Numerical simulations of discharge channel erosion, validated with detailed experimental diagnostics using NASA-77M thruster (GRC, U. Michigan)

High Voltage Hall Accelerator (HiVHAC)

• Design Objectives:

Input Power	0.3 - 3.6 kW
Specific Impulse	1600 - 2700 s
Efficiency	> 60%
Thrust	20 - 150 mN
Propellant Throughput	>150 kg (SOA)
	>300 kg (ASOA)
Specific Mass	1.3 kg / kW
Operational Life	> 10,000 hrs

Combined with lower system complexity, low power HiVHAC thrusters offer significant benefits for NASA Discovery missions

Mission Example: DAWN cost and performance comparison

Reduced cost relative to NSTAR baseline

Increased payload relative to NSTAR baseline

Erosion Simulations and Model Validation

- Provide erosion data to validate hall thruster channel erosion models
- Erosion measured during wear test of NASA-77M thruster:
 - 1.75-kWe (500 V, 3.5 A, 118 mA/cm²)
 - Operated at lower power density to increase total operating time (limited by thruster wall thickness)
 - Wear profiles of inner and outer channel walls measured every 100 hours
 - Thruster performance measured continuously
- Channel walls were significantly eroded after 300hours of operation
 - channel replaced and wear test continuing in order to gather additional erosion data

Additional Wear Testing with Aerojet BPT-4000 Thruster

- BPT-4000 previously qualified by Aerojet with a 5600 hour life test
 - Lockheed-Martin/USAF customer
- NASA sponsored a 1000-hour life test extension (through June 2006)
- Additional wear data to improve fidelity of Hall thruster erosion models
- Depending on funding, Aerojet can extend life test to longer duration
 - Opportunity to evaluate use of commercial thrusters for NASA missions

BPT-4000	Thrust (mN)		Specific Impulse (sec)	
	End of Life Test	Start of Life Test Extension	End of Life Test	Start of Life Test Extension
3.0 kW-300 V	190	191	1839	1842
3.0 kW-400 V	171	172	2012	2008
4.5 kW-300 V	278	278	1963	1976
4.5 kW-400 V	254	256	2151	2162

SOA and ASOA Thruster Status

- NASA-94M (SOA)
 - Aerojet fabrication of the State-of-Art (SOA)
 laboratory model thruster NASA-94M expected to be complete in late June 2006, followed by acceptance testing at GRC

- Vendor fabrication of the Advanced State-of-Art (ASOA) laboratory model thruster NASA-103M expected to be complete by late July 2006, followed by acceptance testing at GRC
- Extended duration tests of SOA and ASOA thrusters planned for FY07

SOA

ASOA

National Aeronautics and Space Administration

Standard Architecture

<u>Objective</u>: reduce electric propulsion system non-recurring engineering costs by standardizing components and increasing manufacturability of sub-systems

- Single-string architecture to reduce system costs
- Operate various thrusters to match mission needs
 - NEXT, NSTAR, possibly commercial thrusters (XIPS)
- Standardize power supply topologies
- Embed DCIU to reduce production costs
- Standardize propellant management systems (LPA, HPA, VACCO, etc)

Solar Array Spacecraft Avionics High Voltage Electronics Assembly (HVEA) PPUICOLU 1 XCA1 FT1 FT1 XCA1 FT2 XENON Tank Standard Architecture

Status:

PPU/DCIU design selection in FY06, initiate procurement in FY07

Proposed: Life Qualification Standards

Objective: improve method for thruster life qualification

- Thruster life qualification for SMD missions currently require several thousand to tens of thousands of hours of vacuum ground tests
 - Expensive and time consuming; roadblock to user acceptance
- Ongoing activities at NASA centers, industry, and universities to model ion and hall thruster erosion characteristics, predict thruster lifetimes
 - Ion grid erosion
 - Discharge cathode erosion
 - Hall thruster chamber erosion
- <u>Need to establish</u> a set of standards for electric propulsion thruster life qualification using combination of numerical models and limited ground test validation
 - Establish expert working group to develop standards, with SMD and TMCO participation (represent user community)
 - Identify, develop and validate remaining ion and hall thruster life models
 - Publish standards documents for community acceptance and use

For additional information on **Solar Electric Propulsion** within the In-Space Propulsion Technology Program, please contact:

Dr. Michael LaPointe SEP Technology Area Manager Phone: 256-544-2648 michael.r.lapointe@nasa.gov

Ms. Wendy Hulgan SEP Lead Systems Engineer Phone: 256-544-7442 wendy.hulgan@nasa.gov

Mr. John Dankanich SEP Technical and Mission Support Phone: 256-544-8587 john.dankanich@nasa.gov

www.nasa.gov